Featured post

GUEST POST: A Very Brief History of Optical High Resolution Satellite Imaging

The history of the optical high resolution satellite images starts from classified military satellite systems of the United States of America that captured earth’s surface from 1960 to 1972. All these images were declassified by Executive Order 12951 in 1995 and made publically available (Now freely available through the USGS EarthExplorer data platform under the category of declassified data). From 1999 onward, commercial multispectral and panchromatic datasets have been available for public. Launch of Keyhole Earthviewer in 2001, later renamed as Google Earth in 2005, opened a new avenue for the layman to visualize earth features through optical high resolution satellite images.

A comparison of declassified Corona (1974) vs. GeoEye-1 (2014) image. Image credits: EarthExplorer (Corona) and Google Earth (GeoEye-1).

In the current era, most high resolution satellite images are commercially available, and are being used as a substitute to aerial photographs. The launch of SPOT, IKONOS, QuickBird, OrbView, GeoEye, WorldView, KOMPSAT etc. offer data at fine resolutions in digital format to produce maps in much simpler, cost effective and efficient manner in terms of mathematical modeling. A number of meaningful products are being derived from high resolution datasets, e.g., extraction of high resolution Digital Elevation Models (DEMs) with 3D building models, detailed change assessments of land cover and land use, habitat suitability, biophysical parameters of trees, detailed assessments of pre and post-disaster conditions, among others.

Both aerial photographs and high resolution images are subject to weather conditions but satellites offer the advantage of repeatedly capturing same areas on a reliable basis by considering the user demand without being restricted by considering borders and logistics, as compared to aerial survey.

Pansharpening / resolution merge provides improved visualization and is also used for detecting certain features in a better manner. Pansharpening / resolution merge is a fusion process of co-georegistered panchromatic (high resolution) and multispectral (comparatively lower resolution) satellite data to produce high-resolution color multispectral image. In high resolution satellite data, the spectral resolution is being increased and more such sensors with enhanced spectral sensitivity are being planned in the future.

List of the Spaceborne Sensors with <5 m Spatial Resolution

Sensors Agency/Country Launch Date Platform altitude (km) GSD Pan/MSS (m) Pointing capability (o) Swath width at nadir (km)
IKONOS-2 GeoEye Inc./USA 1999 681 0.82/3.2 Free View 11.3
EROS A1 ImageSat Int./Cyprus (Israel) 2000 480 1.8 Free View 12.6
QuickBird DigitalGlobe/USA 2001 450 0.61/2.44 Pan and MSS alternative Free View 16.5
HRS SPOT Image/France 2002 830 5X10 Forward/left +20/-20 120
HRG SPOT Image/France 2002 830 5(2.5)x10 sideways up to ±27 60
OrbViw-3 GeoEye Inc./USA 2003 470 1/4 Free View 8
FORMOSAT 2 NSPO/China, Taiwan 2004 890 2/8 Free View 24
PAN (Cartosat-1) ISRO/India 2005 613 2.5 Forward/aft 26/5 Free view to side up to 23 27
TopSat Telescope BNSC/UK 2005 686 2.8/5.6 Free View 15/10
PRISM JAXA/Japan 2005 699 2.5 Forward/Nadir/aft -24/0/+24 Free view to side 70 35 (Triplet stereo observations
PAN(BJ-1) NRSCC (CAST)/China 2005 686 4/32 Free View 24/640
EROS B ImageSat Int./Cyprus (Israel) 2006 508 0.7/- Free View 7
Geoton-L1Resurs-DK1 Roscosmos/Russia 2006 330-585 1/3 for h = 330km Free View 30 for h = 330km
KOMPSAT-2 KARI/South Korea 2006 685 1/4 sideways up to ±30 15 km
CBERS-2B CNSA/INPE China/Brazil 2007 778 2.4/20 Free View 27/113
WorldView-1 DigitalGlobe/USA 2007 494 0.45/- Free View 17.6
THEOS GISTDA/Thailand 2008 822 2/15 Free View 22/90
AlSat-2 Algeria 2008 680 2.5 up to 30 cross track Free view 17.5
GeoEye-1 GeoEye Inc./USA 2008 681 0.41/1.65 Free View 15.2
WorldView-2 DigitalGlobe/USA 2009 770 0.45/1.8 Free View 16.4
PAN (Cartosat-2, 2A, 2B) ISRO/India Cartosat 2-2007 Cartosat 2A-2008 Cartosat   2B-2010 631 0.82/- Free View 9.6
KOMPSAT-3 KARI/South Korea 2012 685 0.7/2.8 ±45º into any direction (cross-track or along-track) 15
WorldView-3 DigitalGlobe/USA 2014 617 0.3/1.24/3.7/30 13.1

 Conflicts of Interest: The findings reported stand as scientific study and observations of the author and do not necessarily reflect as the views of author’s organizations.

 About this post: This is a guest post by Hammad Gilani. Learn more about this blog’s authors here

The Importance of Good Plots and Graphs: The McKinsey COVID-19 Briefing Note

I was recently looking at the McKinsey COVID-19 Briefing Note from late-March, and the first thought that come to my mind was that it is a great example of how to use clever and focussed graphs and plots to present data and information. In my personal view, choosing and implementing appropriate methods and approaches to visually present data is a skill that should be first learned, and then later on becomes an instinct with experience. I try to teach various methods of plotting and representing information in my graduate course on Data Analysis for the Earth Sciences, and whenever I teach it next, I think I will definitely use the McKinsey report as a case study / example. Access the McKinsey late-March COVID-19 Briefing Note here and take a look for yourself.

As an example, recently I was working on a paper with a colleague (published here), where we were initially representing some numbers in a huge table. After some further discussion, we decided to represent them in the form of grouped bar plots. Even though this involved many hours of discussion, planning the design, and effort, the final version of the grouped bar plots really enhanced the usability of the information, and also the visual representation of the inter-relationships within the various data parameters.

A simple looking set of grouped bar plots sometimes requires many lines of code and many hours of work.

Synthetic Aperture RADAR (SAR) Remote Sensing Basics and Applications – Part 2

A very good curated list of SAR data sources and processing softwares.

GeoSpatial WareHouse

Software, Tools, Libraries, Utilities etc.  Detail
SAR data processing
Polarimetric and polarimetric interferometric SAR (PolSAR / PolInSAR)
  • PolSARPro – The ESA Polarimetric SAR Data Processing and Educational Tool
Interferometric synthetic aperture radar (InSAR)
  • GMT5SAR – InSAR processing system based on GMT. (for developers)
  • ISCE – InSAR Scientific Computing Environment.
  • Doris – Delft object-oriented radar interferomtric software.
  • Gamma – Gamma Remote Sensing SAR and Interferometry Software.
Multitemporal/time series InSAR analysis
  • GIAnT – Generic InSAR Analysis Toolbox.
  • MintPy – Miami INsar Time-series software in PYthon.
  • PyRate – A Python tool for Rate and Time-series Estimation
  • SARPROZ – The SAR PROcessing tool by periZ
  • StaMPS/MTI – Stanford Method for Persistent Scatterers – git-version
Performing Tropospheric Noise…

View original post 393 more words

Synthetic Aperture RADAR (SAR) Remote Sensing Basics and Applications

GeoSpatial WareHouse

This post will provide an overview of the basics of Synthetic Aperture RADAR (SAR) and applications. The main topics discussed in the listed documents include: SAR basics, backscatter, geometry, interferometry, polarimetry, SAR data, data acquisition, available data sets/access to data, data analysis tools, future missions and SAR applications. Please do check Part 2 for more details.

What is RADAR? – RAdio Detection And Ranging

What is SAR? – Synthetic Aperture Radar – Synthetic Aperture Radar (SAR) is an active remote sensing technology that uses microwave energy to illuminate the surface. The system records the elapsed timeand energy of the return pulse received by the antenna (PDF).

Image result for SAR satellite systems (source: unavco)

Synthetic Aperature Radar (SAR) Tutorials

  1. A Tutorial on Synthetic Aperture RADAR – ESA (PDF )  (PDF) (Radiometric Calibration of SAR Image)
  2. The Canada Centre for Mapping and Earth Observation (CCMEO) is considered…

View original post 1,329 more words

Forest Fires in Pakistan – A Geospatial Analysis

We cannot underrate the significance of forests in our life. We rely on the forests for living, from the air we breathe to the wood we exploit. Apart from providing food and shelter to animals and livelihoods to people, forests are playing major role in tempering climate change and help in preventing soil erosion as well. Yet, regardless of forests requirement for survival, we are still permitting them to die out. Forest fires are among the main factors causing huge damage to forest ecosystem and in larger context climate change.

Forest fire occurs when the forest burns either naturally or by anthropogenic activity which brings loss of organic matter, deforestation and greenhouse gases emissions, mainly carbon dioxide and methane. Natural forest fire includes an unplanned burning of forest due to lighting mostly in dry season. Human-induced forest fire results due to carelessness of people when they leave burning woods after cooking, cigarettes or an unauthorized burning practices e.g. shifting cultivation, fuelwood collection.

According to media, In June 2019, around 1.22 million trees have been burned down in different forest divisions of Khyber Pakhtunkhwa province soon after Eid-ul-Fitr in which most of the burnt trees were planted under the Billion Tree Tsunami campaign by the government in the last two years. There could be multiple reasons of these fires but it’s a matter of serious concern how can fires erupt at once over so many locations.

Over 100,000 trees burnt down in Khyber Pakhtunkhwa wildfires: officials

Therefore, a small study is carried out to remotely detect and measure the fire affected areas with the generation of burn severity map for the assessment of affected areas. Satellite imagery of Sentinel 2A were used in Google Earth Engine (GEE), a total of seven images of each (pre-fire and post-fire) of months May and June 2019 respectively were mosaiced to cover the whole forest fire effected area. The Normalized Burn Ratio (NBR) index was applied over the pre and post fire images. To assess and map the forest fire burn severity, post-fire NBR was subtracted from the pre-fire NBR to create the differences (or delta) NBR (dNBR) image. The dNBR values were classified according to burn severity ranges proposed by the United States Geological Survey (USGS) from which only four burn severity classes (High, Moderate-high, Moderate-low and Low) were implemented in this study.

Initially by visual interpretation of temporal Sentinel-2A satellite imagery, it was surprising to know that not only the districts of Khyber Pakhtunkhwa (KP) but also the several districts of Azad Jammu and Kashmir (AJK) and Punjab as well as several locations in Islamabad Capital Territory (ICT) were part of these blazes. In 16 districts and ICT, a total of 595 forest fire events (Figure 1a) at smaller scale to very large area extent were recognized with total 20,778 hectares (ha) area effected (Figure 1b).

Figure 1: Based on June 2019 Sentinel-2A satellite images, an assessment of (a) Forest fire events and (b) Burnt area quantification in affected regions of AJK, ICT, KP and Punjab

Less than 10 forest fire events were observed in ICT and Dara Adam Khel, Mardan and Shangla districts of KP while more than 70 forest fire events were recorded in Kotli district of AJK, Abbottabad and Mansehra districts of KP. Mirpur, Muzaffarabad, Islamabad, Shangla and Swabi are among the least fire affected areas with burnt area below 400 ha. The Kotli district in AJK is the most affected with number of fire events up to 87 and 1,602 ha burnt area. Overall, Rawalpindi and other districts of KP including Haripur, Mansehra and Nowshera exhibit dramatically more than 2,000 ha forest burnt.

Out of total 20,761 ha forest fire affected areas of all districts, 14,529 ha were detected under Low burn severity while 5,359 ha and 7,72 ha area is recognized with Moderate-low to Moderate-high forest fire severity, respectively, only 101 ha area observed under High burn severity.

A screenshot of the developed web application for dynamic visualisation in Google Earth Engine is shown below in Fig. 2. The dynamic interactive application can be accessed here.

Figure 2: Screenshot of the Google Earth Engine visualisation web application and swiping features. To interact with the dynamic visualisation, click on the image or go to this link.

Based on temporal assessment (May-June 2001 – 2019) of the MODIS/VIIRS Fire Information for Resource Management System (FIRMS) daily product, we have observed total 17,879 fire incidents in 17 administrative units (Figure 3). Although government, civil societies and individuals are planting more and more trees but conservation of existing trees should be our core and primary responsibility. Based on in-situ and geospatial datasets, a comprehensive study needs to be conducted for better understanding, to take forest fire precaution measurements, and for effective implementation of developed forest conservation policies and practices.

Figure 3: Counting of fire incidents between May-June 2001-2019, based on FIRMs satellite product.

About this post: This is a guest post by Hammad Gilani and Awais Ahmad

Acknowledgement: The Geospatial Research and Education Lab (GREL) at Institute of Space Technology (IST), Islamabad, Pakistan.

Conflicts of Interest: The findings reported stand as scientific study and observations of the author and do not necessarily reflect as the views of author’s organizations.

Mangrove in Pakistan are increasing and standing tall – Spatiotemporal assessment (1990-2015)

Introduction

Coastal ecosystems include mixing of fresh and sea water as well as coastlines and adjacent lands. Carbon is stored and captured in mangrove forests, sea grass meadows and inter-tidal salt marshes. The blue carbon is found in soil, sediments and under the vegetation. Oceans and coastal regions capture carbon and reduce the impact of greenhouse gases through sequestration (taking in). Coastal habitats are one of the best conservator of blue carbon, and when these habitats are damaged, large amount of carbon is added back into the atmosphere which results in climate change.

Coasts are affected both by climate change and anthropogenic activity. The global coastal zones are home to over 60% of human population. More than half the world’s population lives within 60 km of the shoreline.

The Sustainable Development Goal (SDG) 14 focuses on the conservation and sustainable use of ocean, seas and marine resources. Oceans contribute towards regulation of the environmental and climate cycle, and also are important economically in terms of fishery. Oceans are facing anthropogenic threats like marine pollution and depletion of natural resources, which enhance the effects of climate change. The Sustainable Development Goal (SDG) 15 focus is to protect, restore and promote sustainable use of terrestrial and fresh water ecosystems, and sustainably manage forests.

Mangrove deforestation emits as much CO2 as Myanmar each year

Mangrove sites in Pakistan

Pakistan’s coastline is 1,050 km long and 40-50 km wide, which is distributed among the Baluchistan (700 km) and Sindh (350 km) province, geopgraphically placed between 24° to 25° N latitude and 61° to 68° E Longitude. In 1958, mangrove forests of Pakistan were declared, “protected forest” under the Pakistan Forest Act 1927 and alongside water channels as “wildlife sanctuaries” in 1977 under the Sindh Wildlife Safety Ordinance of 1972. The human population in and around mangrove forests of Pakistan is approximately 1.2 million, and almost 90% of the population derive their primary income from fishing and its associated activities. Mangrove forests areas are distributed in five distinct geographic pockets: Indus Delta, Sandspit, Sonmiani Khor, Kalmat Khor, and Jiwani (Figure 1).

Fig. 1: Five mangrove sites in Pakistan

Brief methodology – Mangrove cover and change assessment

In the Google Earth Engine (GEE) cloud computing platform, Landsat 30m spatial resolution satellite images were used for generating three land cover classes: Mangrove, Water and Others. Low tide height (preference February to April) 1990, 1995, 2000, 2005, 2010 and 2015 Landsat images were selected for the land cover classification. 70% of the training samples used to train the images through the random forest classification algorithm in GEE while 30% samples were used for accuracy assessment. Approximately 35 samples were taken for each land cover class to train and validate. From 1990 to 2015 at five years intervals, using the conversion (or change) matrix approach, “gross loss”, “gross gain”, and “net change” mangrove cover has been reported and mapped.

Mangrove Monitoring in Google Earth Engine

Spatial-temporal assessment of mangrove cover

Initial findings of this research reveal that over the 25 year period spanning 1990 – 2015, the overall mangrove cover in Pakistan has increased (figure 2). At the national scale over the five sites, mangrove cover has increased from 487 km2 in 1990 to 1,279 km2 in 2015 with the rate of change 0.04 km2/year.

Figure 2: Mangrove cover assessment based on Landsat 30 m spatial resolution data at five years interval from 1990 to 2015

Pakistan is attempting to mitigate climate change effects through tree plantation initiatives e.g. Green Pakistan Programme, Billion Tree Tsunami in Khyber Pakhtunkhwa province. Particularly in the coastal areas, Pakistan has taken gigantic steps toward conservation of coastal ecosystems through mangrove plantation, community awareness programs, and eco-tourism activities. In the coastal areas, from 2006 onwards, Pakistan has been carrying out annual mangrove plantation campaigns. As an acknowledgment, in 2009, Pakistan received a certificate from Guinness Book of World Records on planting 541,176 mangrove saplings in a single day in Keti Bunder (Indus delta). Indeed, even in later years, mangrove plantation activities continued with more determination to restore the degraded and clear mudflats. National and international Non-Governmental Organizations (NGOs) and local Community-Based Organizations (CBOs) are actively supporting these government initiatives of rehabilitation activities.

Figure 3: Extensive and impressive improvement in mangrove plantation, Hajamro Creek, Indus Delta (24.11620779°N and 67.39126534°E). Photo credits: WWW-Pakistan.

200,000 mangrove planted in Balochistan

Mangrove cover change assessment

In 25 years (1990-2015) over the five mangrove sites, a total 54km2 deforestation (loss) and 843km2 afforestation (gain) was observed. Out of total deforestation and afforestation, 46km2 deforestation and 807km2 afforestation was noticed in the Indus Delta.

Figure 4: Spatial extent of mangroves deforestation (loss) and afforestation (gain) in last 25 years (1990-2015).

Future outlook – Pakistan coastal ecosystem mapping and monitoring

  • Mangrove forest fragmentation analysis
  • Mangrove density (60% tree canopy) mapping and monitoring
  • An online web portal for the visualization and dissemination of products
  • An online mobile app development for the field data collection
  • A detailed field campaign in Jan 2020 over the entire Indus Delta
  • Estimation and mapping of carbon emission and sequestration due to deforestation and afforestation, respectively
  • A detailed map of mangrove species, algae and salt marshes using Sentinel-2 data

About this post: This is a guest post by Hammad Gilani and Hafiza Iqra Naz

Acknowledgement: The Geo spatial Research and Education Lab (GREL) at Institute of Space Technology (IST), Islamabad, Pakistan; GIS Laboratory at World Wide Fund for Nature (WWF-Pakistan)

Conflicts of Interest: The findings reported stand as scientific study and observations of the author and do not necessarily reflect as the views of author’s organizations.

7 things to consider when you need a map

A very good guideline on what to think about when making a map.

Scientia Plus Conscientia

I have the privilege of working with (and learning from) many colleagues that are highly knowledgeable and skilled in several fields although perhaps not in geographical matters. For them I have written a number of short lists to serve as simple reminders of what to consider before tackling some problem or task.

Most of these lists only make sense in the context of our activities, but I believe that a few of them may be of value for a more general public. The one below is one of those, and therefore I decided to share it with the general community.

Do you think there is something important missing? Feel free to remind me in the comments!

What to consider when you need a map?

1. Purpose and readers

  • Who will use this map?
  • For what purpose?
  • What do the readers expect?
  • What are the common practices in this field?

2…

View original post 248 more words

Real-Time Crop & Drought Monitoring System – RECENT

GeoSpatial WareHouse

RECENT

RECENT combines a data from Multiple Satellites Observations Monitor and Assess Impact from Drought in Regional Scale. Daily/Monthly Drought index data with Satellite Rainfall and Land Surface Temperature are available to Visualize and Download through this Web Site (http://iis.gic.ait.ac.th).

The RECENT service is available for countries; Bangladesh, Bhutan, Cambodia, China, India, Indonesia, Lao_PDR, Mongolia, Myanmar, Nepal, Pakistan, Philippines, SriLanka, Thailand & Vietnam.

Satellite observed Rainfall and Land Surface Temperature data are used here to obtain a daily drought product called Keetch-Byram Drought Index (KBDI), which ranges from 0 (wet condition) to 800 (dry condition). Anomaly of drought index (KBDI) which is deviation from long term average if Drought Index is an Indicator of Drought Condition. Hourly global rainfall data at 0.1° spatial resolution is obtained from GSMaP NRT System by Japan Aerospace Exploration Agency (JAXA). It is derived from microwave radiometers (e.g., TMI, AMSR-E and SSM/I) and infrared radiometers (e.g., MTSAT…

View original post 79 more words

Downstream Space Wars – When everyone is Super

Very good blog post on ForestPlanet about the future of EO data, portals, and platforms. I also foresee near-real-time satellite imagery becoming available to the user community within the next 5-6 years. The boom of small-satellite constellations in both the optical (e.g. Planet) and SAR (e.g. Capella Space, IceEye) is already a game changer in the industry, and will cause more disruption in the EO data + analytics domains in the future.

Forest Planet

A war is looming in the downstream space sector.

The adversaries are the Earth observation platform providers.  The battle ground is “content”. 

The notion of “content” shaping the market success of new technologies is not new. In the 1970s the range of movies available on VHS helped it beat Betamax, and when several film studios committed to Blu-ray in 2008, it was the death nell for HD DVD.  Today, similar content battles are being fought between Netflix and Disney, or Xbox and Play Station.  “Our future largely lies in exclusive original content,” said Netflix in its latest earnings report.

The same is true for the geospatial platform providers.  The “content” is geospatial data, fuelled by the explosion in new commercial Earth observation satellites. This is also the inspiration for predictions that the global remote sensing services market will double over the next 5 years from $10.68 billion to…

View original post 2,080 more words

Converting NEODAAS Mercator Projection netCDF files to GeoTiffs for use in QGIS / ArcMap

One way to handle netCDF files in GIS environments through Python.

spectraldifferences

NetCDF files are a common format for distributing Earth Observation data and allow the ability to store a number of variables alongside metadata. However, using netCDF files in a GIS is not always as easy as it could be.

The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) routinely produce products such as Chlorophyll from EO data and store as netCDF files. For the UK they use a Mercator projection within a netCDF file storing the latitude and longitude of each pixel within separate arrays. Unfortunately QGIS and ArcMap are often unable to read this information so don’t read data into the correct location making it difficult to use with other datasets.

To read data into the correct location I wrote a script which converts the latitude and longitude values in the netCDF file into tie points and then uses these to warp a GeoTiff into the…

View original post 83 more words

خلائی ترقی: ملکی استحکام کےلیے ضروری

اپریل 1986 میں پاکستان کے جاوید میاں داد نے شارجہ کپ فائنل میں 116 رنز کی ناقابل شکست اننگز کھیلی۔ یہ میچ اس وقت دلچسپ موڑ پر آن پہنچا تھا کہ جب میچ کی آخری گیند پر چار رنز درکار تھے اور میاں داد نے چھکا لگا کر ہندوستان کو شکست فاش دی۔ جب اس منظر کو پہلی بار براہ راست ہمارے گاؤں کی اکلوتی ٹیلی ویژن اسکرین پر براہ راست دیکھا گیا تو لوگوں کی خوشی کے بجائے حیرت دیدنی تھی۔ گاؤں میں پہلی بار ریڈیو پر کمنٹری کے دوران سنی جانے والی گیند کی ’’ٹک‘‘ کی آواز کے ساتھ ساتھ حرکت کرتے کھلاڑیوں کو بھی دیکھا گیا۔ ایسا اس لیے ممکن ہوا کہ خلاء میں موجود مصنوعی سیارچے نے برقناطیسیلہروں کی مدد سے یہ منظر سیکڑوں میل دور دراز کے گاؤں کی ٹیلی ویژن اسکرین تک پہنچایا۔

Picture Express PK

پاکستان کے معرض وجود میں آنے سے اب تک ہندوستان نے اسے دل سے تسلیم نہیں کیا اور اس ازلی مخامصت کی وجہ سے نہ صرف دونوں ملکوں کے درمیان کئی جنگیں بھی ہوچکی ہیں بلکہ آئے روز سرحد پر گولہ باری بھی جاری رہتی ہے۔ ہندوستان نے پاکستان اور ہمسایہ ممالک پر دھونس جمانے اور اپنی اجارہ داری قائم کرنے کےلیے سائنس اور ٹیکنالوجی، خاص کر خلائی ترقی پر بہت توجہ دی ہے۔ آئیے میں آپ کو پاکستان اور ہندوستان کی خلائی دوڑ کا کچھ احوال سناتا ہوں۔

پاکستان کا خلائی تحقیقی ادارہ ’’سپارکو‘‘ 1961 میں قائم ہوا اور تقریبا 57 سال گزرنے کے بعد بھی اس کے پاس صرف ایک مصنوعی سیارچہ ہے جو صرف مواصلات سے متعلقہ امور سر انجام دیتا ہے۔ گزشتہ ماہ دو مزید سیارچے بھی چین کی مدد سے خلاء میں بھیجے گئے ہیں جبکہ ہندوستان کا خلائی تحقیقی ادارہ اس سے عمر میں ایک سال چھوٹا ہے مگر خلاء میں اس کے تقریباً 36 مصنوعی سیارچے محوِ گردش ہیں جو زمینی و خلائی مشاہدات، موسمیات و مواصلاتی رابطے اور زمیں پر جگہ کے درست تعین جیسے اہم امور کی انجام دہی میں مصروف ہیں۔

پاکستان نے ملک میں تیار کردہ پہلا خلائی سیارچہ بدر اوّل 1990 میں، چین نے اپنا اوّلین سیارچہ ’’ڈونگ فینگ ہانگ ون‘‘ 1970 میں جبکہ ہندوستان نے ’’آریہ بھٹا‘‘ نامی اپنا پہلا سیارچہ 1975 میں خلاء میں بھیجا۔ چین اپنی سرزمین سے خلاء میں تقر یباً 280 مشن خلاء میں بھیج چکا ہے جبکہ ہندوستان نے اب تک 164 مشن بھیجے ہیں۔ پاکستان اس دوڑ میں کہیں پیچھے ہے۔ ہندوستان کے کل 88 سیارچے، چین کے 300 سے زائد، امریکہ کے 1600 سے زائد سیارچے زمین کے مدار میں بھیجے گئے ہیں۔ امریکہ اور روس کی طرح اب ہندوستان اور چین بھی اپنے مشن کامیابی سے چاند پر بھیج چکے ہیں، بلکہ ہندوستان تو انتہائی کم لاگت سے مریخ پر بھی اپنا مشن ’’منگلیان‘‘ بھیجنے میں کامیاب ہوا ہے۔ چین تو اپنا ایک خلاء نورد بھی کامیابی سے بین الاقوامی خلائی اسٹیشن پر اتار چکا ہے۔

پاکستان نے ملکی ساختہ تجرباتی سیارچہ بدر اوّل 1990 میں جبکہ بدر بی 2001 میں خلاء میں بھیجے ہیں۔ دونوں سیارچے ہی خاطر خواہ نتائج فراہم نہیں کرسکے اور کچھ عرصے بعد ہی خلاء کی وسعتوں میں گم ہوگئے۔ تعلیمی ادارہ برائے خلائی ٹیکنالوجی کے اساتذہ اور طلبا نے ’’آئی کیوب‘‘ نامی چھوٹا تجرباتی خلائی سیارچہ (تقریباً 1 کلوگرام وزنی) 2013 میں کامیابی سے نچلے خلائی مدار میں بھیجا جو صرف ایک مخصوص پیغام نشر کرتا ہے، جسے وی ایچ ایف کی مخصوص فریکوئنسی (تعدّد) پر سنا جاتا رہا ہے۔ حال ہی میں پاکستان نے چین کے تعاون سے ’’پی آر ایس ایس ون‘‘ (1200 کلوگرام) اور ’’پاک سیٹ ون‘‘ (285 کلوگرام) نامی دو خلائی سیارچے نچلے مدار میں بھیجے ہیں جن میں سے ایک خاص طور پر پاکستانی سائنسدانوں نے اپنے وسائل سے تیار کیا ہے۔ ان سیارچوں کو زمینی مشاہدات، بالخصوص قدرتی آفات، سی پیک، ماحولیات، نقشہ سازی، زراعت اور منصوبہ بندی جیسے مختلف اہم قومی اُمور کی بجا آوری میں استعمال کیا جاسکے گا۔

یہ منصوبہ پاکستان میں ایک سنگ میل کی حیثیت رکھتا ہے کیونکہ اس سے پاکستانی ماہرین، منصوبہ سازوں اور سائنسدانوں کی استعداد میں اضافہ ہوگا اور ملکی ساختہ سیاروں سے حاصل شدہ مستند، کم خرچ اور تیز ترین معلومات تک رسائی ممکن ہوسکے گی۔ پاکستانی خلائی ادارہ سپارکو اور ملکی ماہرین اس سے قبل کلیدی طور پر فرانس کے سیارچے ’’اسپاٹ‘‘ اور بعض امریکی سیارچوں پر انحصار کرتے تھے جس سے کثیر زر مبادلہ بیرون ملک صرف ہوجاتا تھا اور دوسروں کی محتاجی الگ سے تھی۔

ہندوستانی افواج کو زمینی مشاہدات اور دشمن پر نظر رکھنے کےلیے ملکی ساختہ 13 مصنوعی سیارچوں کی مدد حاصل ہے جبکہ پاکستانی افواج کے پاس اس معیار کا ایک بھی سیارچہ موجود نہیں۔ پاکستان اپنی دفاعی ضروریات کےلیے فرانس کے مصنوعی سیارچے پر انحصار کرتا رہا ہے جبکہ یہ سیارچہ بھی ہندوستان کے لانچنگ راکٹ سے خلاء میں بھیجا گیا تھا۔ ہندوستان کا سیارچہ ’’کارٹو سیٹ‘‘ 2005 سے ہمسایہ ممالک کی سر زمین پر موجود ایک میٹر سے بھی چھوٹی جسامت والی چیزوں کو بہ آسانی دیکھ رہا ہے اور یوں ہندوستان اپنے پڑوسیوں کی مسلسل جاسوسی کرنے میں مصروف ہے۔ بات صرف یہیں تک محدود نہیں بلکہ ہندوستان کسی بھی ملک کے سیارچے کو خلاء ہی میں تباہ کرنے کی صلاحیت بھی حاصل کرچکا ہے۔

ہندوستان نے نہ صرف اپنے سیارچے بلکہ اپنے لانچنگ راکٹ سے 28 ملکوں کے تقریباً 237 مصنوعی سیارچے خلاء میں بھیجے ہیں۔ ہندوستان پر انحصار کرنے والے ممالک میں امریکا، برطانیہ، فرانس، جاپان اور کینیڈا کے علاوہ اور بہت سے ممالک شامل ہیں۔ فروری 2017 میں ہندوستانی خلائی ادارے نے اپنے ایک ہی لانچنگ راکٹ سے 104 مصنوعی سیارچے خلاء میں بھیج کر ایک ریکارڈ قائم کیا تھا۔ ہمارا دوسرا بڑا ہمسایہ ملک چین اس دوڑ میں ہم سے کہیں آگے ہے۔

  سنہ 2000 سے قبل اندرونِ ملک اور بیرونی دنیا میں ٹیلی ویژن نشریات کےلیے پاکستان میں صرف ایک ہی سرکاری چینل تھا جو خبروں، معلومات اور سماجی مسائل میں ہندوستان کی ثقافتی یلغار کا مقابلہ نہیں کر پارہا تھا۔ لہذا 2003 میں پاکستان نے پاک سیٹ ون نامی نشریاتی سیارچہ امریکی کمپنی ’’بوئنگ‘‘ سے ٹھیکے پر لے کر ملک میں ٹیلی وائزڈ میڈیا انڈسٹری کی بنیاد رکھی۔ 2011 میں ٹھیکے والے سیارچے کی جگہ پاکستان نے چین کے ساتھ مل کر اپنا سیارچہ ’’پاک سیٹ ون آر‘‘ خلاء میں بھیجا جس کی مدد سے اب ڈان نیوز، جیو، سماء اور پی ٹی وی کے علاوہ 68 دیگرچینل اپنی نشریات ملک کے طول و عرض میں بیرون ممالک نشر کررہے ہیں۔

’’ڈائریکٹ ٹو ہوم‘‘ ایک ایسی تکنیک ہے جس میں نشریاتی سیارچہ ٹیلی ویژن کی نشریات ایک ڈش انٹینا کے ذریعے گھر گھر پہنچاتا ہے۔ ڈائریکٹ ٹو ہوم تکنیک میں ہر ماہ موبائل فون کی طرح کارڈ لوڈ کرنا پڑتا ہے۔ ہندوستان کے خلائی سیارچے اس تکنیک کو استعمال کرتے ہوئے پاکستان کے دور دراز علاقوں میں اپنی ٹیلی ویژن نشریات پہنچا رہے ہیں جس کے عوض نہ صرف وہ قیمتی زرمبادلہ کما رہے ہیں بلکہ اپنے ملک کی ثقافت اور منفی پروپیگنڈا بھی سادہ لوح پاکستانی عوام تک بہ آسانی پہنچا رہا ہے۔ حالانکہ اس تکنیک کےلیے پاکستان کے پاس اپنا مصنوعی سیارچہ اور باقی ضروری ساز و سامان موجود ہے۔ حد تو یہ ہے کہ پاکستان الیکٹرونک میڈیا ریگولیٹری اتھارٹی (پیمرا) نے 2016 سے 3 کمپنیوں کو تقریباً 15 ارب روپے کے عوض اس کام کا لائسنس بھی جاری کر رکھا ہے مگر بدقسمتی سے دو سال گزرنے کے بعد بھی پاکستان میں ڈائریکٹ ٹو ہوم کی سہولت میسر نہیں آسکی ہے۔

خلاء سے زمین پر جگہ کے تعین کا نظام گاڑیوں، ہوائی جہازوں اور عوام الناس کو اپنی منزل تک رسائی کےلیے ٹھیک ٹھیک معلومات فراہم کرتا ہے۔ اس نظام کے ذریعے دشمن کے اہداف کو بھی درست نشانہ بنایا جاسکتا ہے۔ اس ٹیکنالوجی کی مدد سے امریکا نے بغیر پائلٹ کے طیاروں (یو اے ویز/ ڈرونز) کا استعمال کرکے کئی ناممکن اہداف حاصل کیے ہیں۔ ہندوستان کے پاس اس نظام کےلیے مختص آٹھ سیارچے ہیں جن سے وہ بنیادی طور پر فضائی نقل و حرکت (ایئر ٹریفک) اور دفاعی امور کی دیکھ بھال کرتا ہے جبکہ پاکستان نے حال ہی میں امریکی نظام کو چھوڑ کر چین کے ’’بیڈو‘‘ نامی نظام کو اس مقصد کےلیے اپنالیا ہے۔

پاکستان 1960 کی دہائی میں ایشیا کے تین اور دنیا کے ان دس ممالک کی فہرست میں شامل تھا جنہوں نے کامیابی سے اپنے راکٹ خلاء میں بھیجے تھے۔ پاکستان نے یہ کامیابی ’’رہبر اوّل‘‘ نامی صوتی راکٹ (ساؤنڈنگ راکٹ) کو خلاء میں بھیج کر حاصل کی تھی۔ پاکستان کے پاس شاہین، غوری، نصر اور ابابیل کی صورت میں دنیا کی بہترین میزائل ٹیکنالوجی موجود ہے جسے تھوڑی سی تبدیلیوں کے بعد لانچنگ راکٹ کی صورت میں خلاء کی وسعتوں کو مسخر کرنے کےلیے استعمال کیا جا سکتا ہے۔ اس طرح نہ صرف پاکستان کا بیرونی دنیا پر انحصار کم ہو گا بلکہ اس سے کثیر زرمبادلہ بھی کمایا جاسکتا ہے۔

ہندوستان نے اپنا خلائی پروگرام روس کی مدد سے شروع کیا تھا لیکن مناسب حکمت عملی اور توجہ کی بدولت آج ہندوستان روس سے بھی کہیں آگے نکل رہا ہے۔ پاکستان کو بھی اپنی خلائی ترقی کےلیے صرف چین پر انحصار نہیں کرنا چاہیے بلکہ اپنے ملک کے سائنسدانوں اور انجینئروں کی حوصلہ افزائی کے ساتھ ساتھ ان کی استعداد کار میں بھی اضافہ کرناچاہیے۔ اگر ان خطوط پر سنجیدگی سے اور مصمم ارادوں کے ساتھ پیش رفت کی جائے تو ان شاء اللہ، وہ دن دور نہیں جب پاکستان ایٹمی طاقت کے علاوہ خلاء کی وسعتوں میں بھی اپنا لوہا منوا سکے گا۔

 

:یہ بلاگ اِس سے پہلے ایکسپریس نیوز کی ویب سائٹ پر شائع ہو چکا ہے

https://www.express.pk/story/1291121/464/