Aperture Synthesis and Azimuth Resolution in Synthetic Aperture Radar – Lecture Notes

Teaching the fundamentals of Synthetic Aperture Radar (SAR) system design and imaging mechanism to remote sensing students / professionals is always a difficult task. Remote sensing students / professionals generally do not have an in-depth background of signal processing and radar system design, and as an instructor, I always have to think over how much I need to tell them about SAR system design, without diving into the detailed mathematics of signal processing and imaging mechanism. Normally, I go in-depth towards the imaging geometry and an understanding of the Doppler history curve, and briefly go over the signal-processing heavy concepts like pulse compression and matched filtering. A good fundamental understanding of the SAR system design, imaging geometry, and image formation is essential for remote sensing students / professionals to have a background context knowledge when they select SAR data and process / analyze it for different remote sensing applications.

For the past few years, I have been teaching a graduate course in Radar Remote Sensing and also run an annual Summer School on Earth Remote Sensing with SAR at our research group GREL. One of the core issues in understanding the aperture synthesis process is the requirement for enhancement of the azimuth / along-track resolution. It is always interesting to discuss in class how in normal imaging radar the azimuth resolution depends inversely on the antenna along-track length, while in fully-focussed SAR the azimuth resolution becomes half of the antenna along-track length. This is a significant reversal: In normal imaging radar, we need a bigger antenna in along-track dimension to get better azimuth resolution, while in SAR, the smaller the antenna in the along-track dimension, the better the azimuth resolution.


To explain how aperture synthesis changes the azimuth resolution to half of the along-track antenna length, I have made some detailed notes for my ongoing graduate class on Radar Remote Sensing. These notes require just basic knowledge of geometry, algebra, and sum series in mathematics. I would like to share them with the wider scientific audience, please access the PDF notes here: Aperture Synthesis and Azimuth Resolution.


The synthetic aperture length is defined in the figure above. The azimuth resolution in fully-focussed SAR becomes half of the antenna along-track dimension.

I have taken the help of two excellent resources on SAR remote sensing in developing these notes:

For more in-depth understanding and analysis of how SAR is used for remote sensing, you can consider attending the next Summer School on Earth Remote Sensing with SAR, which I will be offering this summer. The summer school is coming up in July, 2018, and it will be open for international participants; formal dates will be announced soon. Keep watching the GREL website for updates.

This entry was posted in Uncategorized and tagged , , on by .

About WQ

I received my PhD (2013) in Remote Sensing, Earth and Space Science at the Dept. of Aerospace Engineering Sciences, University of Colorado, Boulder, USA, under a Fulbright fellowship. Currently, I'm an Assistant Professor in the Dept. of Space Science at Institute of Space Technology (IST), Islamabad, Pakistan, where I have been a founding member of the Geospatial Research & Education Lab (GREL). My general expertise is in Remote Sensing where I have worked with various remote sensing datasets through my career, while for my PhD thesis I specifically worked on Remote Sensing using SAR (Synthetic Aperture Radar) and Oceanography, working extensively on development of techniques to measure ocean surface currents from space-borne SAR intensity images and interferometric data. My research interests are: Remote sensing, Synthetic Aperture Radar (SAR) imagery and interferometric data processing & analysis, Visible/Infrared/High-resolution satellite image processing & analysis, Oceanography, Earth system study and modelling, LIDAR data processing and analysis, Scientific programming. I am a reviewer for IEEE Transactions on Geoscience & Remote Sensing, Forest Ecosystems, GIScience & Remote Sensing, Journal of African Earth Sciences, and Italian Journal of Agronomy. I am an alumnus of Pakistan National Physics Talent Contest (NPTC), an alumnus of the Lindau Nobel Laureate Meetings, a Fulbright alumnus, and the Pakistan National Point of Contact for Space Generation Advisory Council (SGAC). I was an invited speaker at the TEDxIslamabad event held in Nov., 2014. I've served as mentor in the NASA International Space App Challenge Islamabad events in April 2015 and April 2016.

3 thoughts on “Aperture Synthesis and Azimuth Resolution in Synthetic Aperture Radar – Lecture Notes

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s